Email: chris (AT) $DOMAIN.com
Email: $DOMAIN (AT) cmu.edu
Github
Python, Computational Chemistry, Quantum, Machine Learning, UNIX, Parallel Computing, NetSec, Digital Logic, Fractals, Economics
Current Projects
Research
- Distributed optimization of INDO parameters using machine learning
- Predicting optoelectronic properties of various polymeric systems using Deep Learning
- Coupling effects in polymeric systems of thiophene and phenyl
- Developing new representations for interfacing machine learning and chemistry
- Predicting atomic forces using deep learning
Programming
- Chemtools
A collection of various utilities to make computational chemistry easier in the form of a Django application
Includes:
- Structure generator
- Log file parser
- Cluster job monitor
- Molecular property predictor
Demo Site
- TorqueCluster
A virtual Torque Batch System cluster using Vagrant
- Servers
A collection of various virtual web service backends using Vagrant based on this DigitalOcean article
Past Projects
Research
- Optimizing optoelectronic properties of Benzobisazoles (substituents, ring types, chain lengths, push/pull systems)
- Computational decomposition studies of Benzobisthiaphospholes
- Using Machine Learning (Support Vector Machines) to predict optoelectronic properties of Benzobisazoles
Programming
Technologies
- Python, C, C++, Javascript, Bash, SQL, C CUDA, Go, HTML/CSS, TI-BASIC, Matlab/Octave, Maple, Java
- Scipy, NumPy, Matplotlib, SciKit-Learn, Django, Paramiko, PyCrypto, PIL, Cairo, Selenium, pyTest, DisPy, PyBrain, jQuery, Bootstrap, SDL
- Gaussian, Logisim, LabVIEW, Vagrant, Virtualbox, PostgreSQL, GIMP, Inkscape